Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 54(10): e10514, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285648

ABSTRACT

Exercise intolerance is the hallmark consequence of advanced chronic heart failure (HF). The six-minute step test (6MST) has been considered an option for the six-minute walk test because it is safe, inexpensive, and can be applied in small places. However, its reliability and concurrent validity has still not been investigated in participants with HF with reduced ejection fraction (HFrEF). Clinically stable HFrEF participants were included. Reliability and error measurement were calculated by comparing the first with the second 6MST result. Forty-eight hours after participants underwent the 6MST, they were invited to perform a cardiopulmonary exercise test (CPET) on a cycle ergometer. Concurrent validity was assessed by correlation between number of steps and peak oxygen uptake (V̇O2 peak) at CPET. Twenty-seven participants with HFrEF (60±8 years old and left ventricle ejection fraction of 41±6%) undertook a mean of 94±30 steps in the 6MST. Intra-rater reliability was excellent for 6MST (ICC=0.9), with mean error of 4.85 steps and superior and inferior limits of agreement of 30.6 and -20.9 steps, respectively. In addition, strong correlations between number of steps and CPET workload (r=0.76, P<0.01) and peak V̇O2 (r=0.71, P<0.01) were observed. From simple linear regression the following predictive equations were obtained with 6MST results: V̇O2 peak (mL/min) = 350.22 + (7.333 × number of steps), with R2=0.51, and peak workload (W) = 4.044 + (0.772 × number of steps), with R2=0.58. The 6MST was a reliable and valid tool to assess functional capacity in HFrEF participants and may moderately predict peak workload and oxygen uptake of a CPET.


Subject(s)
Humans , Middle Aged , Aged , Exercise Test , Heart Failure/diagnosis , Oxygen Consumption , Stroke Volume , Reproducibility of Results , Exercise Tolerance , Walk Test
2.
Braz. j. med. biol. res ; 54(2): e10084, 2021. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1142577

ABSTRACT

The objective of this study was to investigate the impact of chronic obstructive pulmonary disease (COPD)-heart failure (HF) coexistence on linear and nonlinear dynamics of heart rate variability (HRV). Forty-one patients (14 with COPD-HF and 27 HF) were enrolled and underwent pulmonary function and echocardiography evaluation to confirm the clinical diagnosis. Heart rate (HR) and R-R intervals (iRR) were collected during active postural maneuver (APM) [supine (10 min) to orthostasis (10 min)], respiratory sinus arrhythmia maneuver (RSA-M) (4 min), and analysis of frequency domain, time domain, and nonlinear HRV. We found expected autonomic response during orthostatic changes with reduction of mean iRR, root mean square of successive differences between heart beats (RMSSD), RR tri index, and high-frequency [HF (nu)] and an increased mean HR, low-frequency [LF (nu)], and LF/HF (nu) compared with supine only in HF patients (P<0.05). Patients with COPD-HF coexistence did not respond to postural change. In addition, in the orthostatic position, higher HF nu and lower LF nu and LF/HF (nu) were observed in COPD-HF compared with HF patients. HF patients showed an opposite response during RSA-M, with increased sympathetic modulation (LF nu) and reduced parasympathetic modulation (HF nu) (P<0.05) compared with COPD-HF patients. COPD-HF directly influenced cardiac autonomic modulation during active postural change and controlled breathing, demonstrating an autonomic imbalance during sympathetic and parasympathetic maneuvers compared with isolated HF.


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Pulmonary Disease, Chronic Obstructive/complications , Heart Failure/complications , Heart Rate , Stroke Volume , Ventricular Function, Left , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL